

Welcome to mtypes’s documentation!

Contents:

	mtypes API Specification
	PyMType_Type

	PyMTypeObject

	PyMTypeFunction

	PyMTypeArgument

	PyMObject

	box and unbox

	__cdict__ protocol

Indices and tables

	Index

	Module Index

	Search Page

mtypes API Specification

mtypes.mtype is a metaclass that allows you to associate extra
C-level information with your type objects like classes within
Python. Also, objects instantiated from those types also have C-level
data associated with them.

PyMType_Type

PyMTypeObject PyMType_Type;

PyMType_Type is the base class for everything. This will be used
as the main type to generate all other mtypes.

PyMTypeObject

typedef struct _mtypeobject
{
 PyHeapTypeObject ht_obj;
 // The functions used for marshaling this type in and out of Python.
 boxfunction box;
 unboxfunction unbox;
 PyMTypeFunction *mt_funcs;
 void *mt_data;
} PyMTypeObject;

PyMTypeObject is essentially a PyTypeObject that allows for extra
functionality, effectively:

	Storing extra data within the object within the mt_data member.

	Marshalling to and from C with the __cdict__ protocol via the
box and unbox methods.

PyMTypeFunction

typedef struct _mfunc
{
 // Analogous to ht_name, ht_slots and ht_qualname in PyHeapTypeObject
 char *mt_name;
 mt_func mt_slot;
 char *mt_qualname;
 PyMTypeArgument *arguments;
 PyMTypeObject *mt_rettype;
} PyMTypeFunction;

PyMTypeFunction Is a struct that simply contains the functions that are implemented into the mtype.
This will have all the methods that relate to that specific function, and will associate the functions with
its basic attributes.

	mt_name is the argument that stores the name of the mtype.

	mt_slots is of the type mt_func, defined in _mtypes.h. It will store the function pointer (and point to the C-level function).

	mt_qualname is used to get information about the function

	PyMTypeArgument is explained below. It contains arguments that define the type.

	mt_rettype is the return type of the function.

PyMTypeArgument

typedef struct _margument
{
 // These fields are used to function signatures for a given function.
 char *name;
 PyMTypeObject *type;
} PyMTypeArgument;

PyMTypeArgument simply contains the function signature, unique to each function.
- char *name is the name of the function itself.

This is a Non-NULL value, returning an empty sting.

	PyMTypeObject *type is a pointer to the type of the argument.

PyMObject

typedef struct _mobject
{
 PyObject obj;
 void *m_data;
} PyMObject;

PyMObject It acts as an intermediary between the Python level
object and the C level object. It contains:

	PyObject, which is the Python-Level Object

	void *m_data which stores the C-level data that is needed
for this object to be represented.

We will use the box and unbox methods to interface between
the Pythonic and C level objects via the __cdict__ protocol.

box and unbox

These functions will be used as the layer of translation between C
structs and Python objects.

typedef PyObject *(*boxfunction)(PyMTypeObject *type, void *data);
typedef int (*unboxfunction)(PyObject *obj, void *data);

boxfunction

The box function is defined as the layer that converts a C struct into a
Python object. The function will perform error checking and will return
an instance of a PyMType.

Input Arguments

	PyMTypeObject *type : The type that the C struct should be marshalled
into.

	void *data: A pointer to the data that needs to be marshalled and
converted to a Python Object.

Output Argument

	PyObject *out: A pointer to a PyObject initalized on
the heap from the C struct. NULL indicates failure. If returning
NULL, a Python exception must be set. The returned object must be
a pointer to either a PyMTypeObject or PyMObject which has
the Python type of type.

unboxfunction

The unbox function is a C function that takes in the Python object
to be marshalled into a C struct.

Input Arguments

	PyObject *obj: The object to be marshalled into C. Its type
must be an instance of PyMTypeObject.

	void *data: A pointer to the C struct to put the data into.

Output Argument

	int return_code: Must be -1 on failure and 0 on success.
If returning -1, a Python exception must be set.

__cdict__ protocol

The __cdict__ protocol will be used as an intermediary between
Python level objects and C structs. This will allow a specific type
signature to be passed from the Python Object into the unbox
function, then passing to a ctypes method, and then calling the
box function eventually returning a PyMObject.

This dict provides the boxfunction and the unboxfunction with
the proper associated C type signature.

from typing import Tuple, Dict
from ctypes import CFUNCTYPE
from mtypes import mtype

class MarshalledClass(metaclass=mtype):
 __cdict__:
 Dict[str, # Lookup by name
 Dict[
 paramflags_type, # Lookup by signature
 CFUNCTYPE, # Implementation
],
]

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to mtypes’s documentation!

 		
 mtypes API Specification

 		
 PyMType_Type

 		
 PyMTypeObject

 		
 PyMTypeFunction

 		
 PyMTypeArgument

 		
 PyMObject

 		
 box and unbox

 		
 boxfunction

 		
 unboxfunction

 		
 __cdict__ protocol

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

